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SUMMARY

We develop a parallel computational algorithm for simulating models of gel dynamics where the gel
is described by two phases, a networked polymer and a fluid solvent. The models consist of transport
equations for the two phases, two coupled momentum equations, and a volume-averaged incompressibility
constraint. Multigrid with Vanka-type box-relaxation scheme is used as preconditioner for the Krylov
subspace solver (GMRES) to solve the momentum and incompressibility equations. Through numerical
experiments of a model problem, the efficiency, robustness and scalability of the algorithm are illustrated.
Copyright q 2008 John Wiley & Sons, Ltd.

Received 3 April 2008; Revised 19 July 2008; Accepted 22 July 2008

KEY WORDS: multiphase flow; multigrid; Vanka relaxation; GMRES; preconditioning

1. INTRODUCTION

Polymer gels are composed of two materials: a polymer network and a solvent. By weight and
volume gels are mostly solvent, but the rheology of the gel can range from a very viscous fluid
to an elastic solid. In addition to viscoelastic stresses, gels can exhibit chemical stresses, which
result in swelling and deswelling behavior.

A commonly used model for the mechanics of gels is the two-phase flow (or two-fluid) model
[1–7]. Each phase, network and solvent, is treated as a continuum and moves according to its own
velocity field. Each region in space is composed of a mixture of the two phases that is described
by the volume fractions of the phases. The equations of motion for the gel consist of two coupled
momentum equations and two continuity equations. These models of gels are based on mixture
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theory [8, 9], which has been used for many applications and is becoming increasingly popular
in models of biological materials such as tissue [10], tumors [11, 12], cytoplasm [1, 3, 4, 6], and
biofilms [2, 13, 14]. While much work has gone into advancing these models, the same is not true
for the development of efficient numerical methods for simulating them. Since repeated simulation
of models is crucial for validating their usefulness, the need for fast and robust computational
methods is essential. A significant step in this direction was described in [15] where a novel serial
algorithm for a subdivision of the problems was introduced.

In this paper we extend the work in [15] by proposing a parallel computational methodology
for solving the same problems. Both the network and solvent are modeled as viscous fluids. The
viscosity of the network is much larger than that of the solvent. The gel feels a chemical pressure
that makes the system bistable, that is, it drives the network volume fraction to one of two preferred
states. Under appropriate conditions the chemical pressure induces phase separation of the mixture
and it is a good test for the robustness of any numerical procedure. Computational tests of the
proposed method are carried out for the model in two dimensions, from which the efficiency and
robustness of the algorithm are investigated.

In many models of gel dynamics, including our model problem, viscous terms are assumed
to dominate so that inertial terms are negligible. This assumption leads to an elliptic system
for the coupled momentum and incompressibility equations that resembles Stokes equations.
However, there are many key differences, which increase the complexity of the problem. First,
since there are two phases, there are two sets of momentum equations. Second, there are off-
diagonal terms coupling the two velocity fields (and the individual components of the two
fields) together. Third, the Laplacians in Stokes equations are replaced by elliptic operators that
involves time-dependent variable coefficients related to the volume fractions of the two phases.
Finally, incompressibility is replaced with a ‘volume-averaged’ incompressibility over the two
fluids.

We use second-order finite differences on a marker-and-cell (MAC) grid [16] to discretize this
system. As with Stokes (and linearized Navier–Stokes) equations, this gives rise to a large, sparse
linear system of saddle point type. In [15], we developed an extension of a multigrid method
initially proposed for Stokes and Navier–Stokes equations by Vanka [17], and which has seen
considerable development in the past several years (see, for example, [18–23]). The method is
characterized by the smoother used and is referred to in literature as box [22, pp. 320–322],
coupled [23], or Vanka [19] relaxation. The basic idea of the smoother is to compute updates
to the solution by collectively solving for the velocity and pressure in the discrete momentum
equations locally, computational cell (or box) by cell. For the gel system, this means solving
a (2d+1+1)-by-(2d+1+1) saddle point system for each cell, where d is the number of spatial
dimensions. Depending on how the cells are processed (like Jacobi or Gauss–Seidel), the method
can also be viewed as an additive or multiplicative Schwarz domain decomposition method, where
the subdomains consist of a single computational cell [19]. We use the smoother with standard
prolongation and restriction operators and do a direct discretization of the equations on the coarse
grids, which makes the implementation relatively simple.

When the network and solvent are well mixed, the multigrid box-relaxation method performs
quite well as a solver for the model problem considered here. However, as phase separation occurs,
the solver performance degrades quite dramatically, and it, in fact, fails in some cases as shown in
[15]. One particularly effective way of improving the robustness of a non-optimal (or even non-
converging) multigrid method is to combine it with a Krylov subspace method (see, for example,
[22, Section 7.8]). In the current paper, a parallel version of the algorithm in [15] is developed,
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which combines the Krylov subspace solver in PETSc [24] with the multigrid box-relaxation
scheme as the preconditioner.

In addition to the momentum and incompressibility equations, models for gel dynamics include
equations for the transport of the network and solvent. For the transport equations we use a
conservative finite-volume discretization in which the advection term is treated explicitly with
first-order upwinding and the diffusion term is handled implicitly with backward Euler.

The remainder of this paper is organized as follows. In Section 2, the model problem for
describing and testing the computational method is introduced. Section 3 describes the discretization
(in space and time) for the 2-D model. In Section 4, the elements of the multigrid box-relaxation
scheme are introduced with parallel considerations, followed by a description of its role as a
preconditioner for GMRES (generalized minimum residual). Section 5 presents the results of
simulations as well as the parallel performance.

2. MODEL PROBLEM

The model problem we consider is for a gel composed of two immiscible materials, a polymer
network and a fluid solvent. We assume that the total amount of gel remains constant and that the
transport of the network and solvent is governed by the following equations:

��n

�t
+∇ ·(�nun)=0 (1)

��s

�t
+∇ ·(�sus)=0 (2)

where �n and �s=1−�n are the respective volume fractions of the network and solvent, 0<�n<1,
and un and us are the respective transport velocities. Adding these two equations and using
�n+�s=1 give the incompressibility-type constraint

∇ ·(�nun+�sus)=0 (3)

The transport velocities are determined by conservation of momentum. We assume that the
network acts as a constant density viscous material and the solvent acts as a Newtonian fluid of
much less viscosity. Viscous terms are assumed to dominate so that inertial terms are negligible
(similar to zero-Reynolds number flow), i.e. the system responds instantaneously to applied forces.

The network and solvent are each subject to a number of intraphase stresses. We assume that
the viscous stress tensors �n and �s for the network and solvent are proportional to the respective
gradient of the network and solvent velocities, i.e.

�n=�n(∇un+∇unT)+�n�i j∇ ·un (4)

�s=�s(∇us+∇usT)+�s�i j∇ ·us (5)

where �n,s are shear viscosities and �n,s+2�n,s/d are the bulk viscosities of the network and
solvent (d is the dimension). The network and solvent are also subject to a frictional drag since the
motion of the solvent influences the network. We model this by ��n�s(un−us), where �>0 is the
drag coefficient. The third force on each phase is due to hydrostatic pressure. Since the polymer
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is assumed to be chemically active within the gel and the solvent is assumed to be chemically
neutral, the final force is generated by a chemical pressure, �(�n), and acts only on the network.
The form of �(�n) used in this paper is described below.

Balancing the above forces on the network and solvent yields the following equations:

∇ ·(�n�n)−��n�s(un−us)−�n∇ p=∇�(�n) (6)

∇ ·(�s�s)−��n�s(us−un)−�s∇ p=0 (7)

where p is the hydrostatic pressure. These two equations, combined with (1) and (3), and subject to
suitable boundary conditions, govern the gel dynamics and are the same as used in [1, 3, 4, 6, 15].
For our test problem we assume no-slip boundary conditions for the network and solvent velocities,
and no-flux boundary conditions for �n and �s.

The chemical pressure includes osmotic pressure, but it may also include active, contractile
stresses such as in the actomyosin gels of cytoplasm. In this paper we are not concerned with the
origins of the chemical stress and refer to it simply as the osmotic pressure. We assume that the
osmotic pressure is of the form

�(�n)=��n(�n−�n0)(�
n−�n∗) (8)

where �>0, 0<�n0<�n∗<1; see Figure 1 for a plot of �(�n) with parameters used in the numerical
experiments that follow. This functional form is chosen since it can produce phase separation, or
channeling. In regions of space where �′(�n)>0 the mixture is stable, but where �′(�n)<0 the
mixture tends to phase separate; see Cogan and Keener [2] for an analysis. This form of � does
not allow the phases to separate completely. Phase separation is generally observed in gels [7] and
is vital for locomotion and for transporting nutrients in some amoeboid cells [25].

Finally, we assume that there is a small amount of diffusion between the network and solvent
in the gel. This is mathematically and computationally useful since it means that the transition
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Figure 1. (a) Osmotic pressure function (8) from the model problem with parameters �=5, �n0=0.01 and
�n∗ =0.15 used in the numerical experiments. (b) A detailed plot of this function near the origin.
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between the network and solvent will be smooth even in areas where the two phases have separated.
This additional assumption changes (1) and (2) to

��n

�t
+∇ ·(�nun)=	∇2�n (9)

��s

�t
+∇ ·(�sus)=	∇2�s (10)

where 	�0 is the diffusion constant. We use relatively small diffusion coefficients so that this
modification does not change the qualitative features of the model, but ensures the solution is
continuous.

3. DISCRETIZATION

Let un=(un,vn)T and us=(us,vs)T, where un, vn and us, vs are the respective network and
solvent velocity components in the x and y directions, and let the spatial domain be �=
{(x, y)|0�x�a,0�y�b}. Then the momentum equations (6)–(7) and volume-averaged incom-
pressibility (3) are given in matrix–vector form as⎡⎢⎣Ln−C C −Gn

C Ls−C −Gs

−DT
n −DT

s 0

⎤⎥⎦
⎡⎢⎣un

us

p

⎤⎥⎦=
⎡⎢⎣∇�(�n)

0

0

⎤⎥⎦ (11)

where

Ln,s=
[


n,s�x (�n,s�x )+�n,s�y(�
n,s�y) �n,s�y(�

n,s�x )+�n,s�x (�n,s�y)

�n,s�x (�
n,s�y)+�n,s�y(�n,s�x ) 
n,s�y(�n,s�y)+�n,s�x (�

n,s�x )

]

C=
[

��n�s 0

0 ��n�s

]
, Gn,s=

[
�n,s�x
�n,s�y

]
, Dn,s=

[
�x�n,s

�y�n,s

]

and 
n,s =(2�n,s+�n,s). Since �s=1−�n, we need only an equation for the transport of �n, which
is again given by (9). We use no-slip boundary conditions for (11) and no-flux for (9). Finally, the
cubic function (8) is used for modeling the osmotic pressure.

For the spatial discretization, we use a MAC grid where the positions of the unknowns are
indicated in Figure 2. The mesh-spacing in the x and y direction is set equal and is given by h.

All equations in (11) are discretized using second-order, centered finite differences, which leads
to the following approximation of the first row of (11) at the interior point (xi+1/2, j , yi+1/2, j ):


n
h2

[�ni+1, j (u
n
i+3/2, j −uni+1/2, j )−�ni, j (u

n
i+1/2, j −uni−1/2, j )]

+�n
h2

[�ni+1/2, j+1/2(u
n
i+1/2, j+1−uni+1/2, j )−�

n
i+1/2, j−1/2(u

n
i+1/2, j −uni+1/2, j−1)]

+�n
h2

[�ni+1/2, j+1/2(v
n
i+1, j+1/2−vni, j+1/2)−�

n
i+1/2, j−1/2(v

n
i+1, j−1/2−vni, j−1/2)]
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Figure 2. Location of the unknowns in the MAC grid for the 2-D gel model: �=network/solvent horizontal
velocity, �=network/solvent vertical velocity, •=pressure, and ©=network/solvent volume fractions.

+�n
h2

[�ni+1, j (v
n
i+1, j+1/2−vni+1, j−1/2)−�ni, j (v

n
i, j+1/2−vni, j−1/2)]

−��
n
i+1/2, j�

s
i+1/2, j (u

n
i+1/2, j −usi+1/2, j )−�

n
i+1/2, j

pi+1, j − pi, j
h

= �(�ni+1, j )−�(�ni, j )

h

(12)

while the approximation to the second row at the interior point (xi, j+1/2, yi, j+1/2) is given by

�n
h2

[�ni+1/2, j+1/2(u
n
i+1/2, j+1−uni+1/2, j )−�

n
i−1/2, j+1/2(u

n
i−1/2, j+1−uni−1/2, j )]

+�n
h2

[�ni, j+1(u
n
i+1/2, j+1−uni−1/2, j+1)−�ni, j (u

n
i+1/2, j −uni−1/2, j )]

+
n
h2

[�ni, j+1(v
n
i, j+3/2−vni, j+1/2)−�ni, j (v

n
i, j+1/2−vni, j−1/2)]

+�n
h2

[�ni+1/2, j+1/2(v
n
i+1, j+1/2−vni, j+1/2)−�

n
i−1/2, j+1/2(v

n
i, j+1/2−vni−1, j+1/2)]

−��
n
i, j+1/2�

s
i, j+1/2(v

n
i, j+1/2−vsi, j+1/2)−�

n
i, j+1/2

pi, j+1−pi, j
h

=�(�ni, j+1)−�(�ni, j )

h
(13)
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Bars over �n and �s represent arithmetic averages of the values of these variables at nearest
neighbor cells with two-point averages when there is a mix of integer and half-integer indices, and
four-point averages when there are two half-integer indices. The discretizations of the third and
fourth row of (11) are the same, but with variables for the network replaced accordingly by the
variables for the solvent. Finally, the last row of (11) is approximated at (xi, j , yi, j ) by

−�
n
i+1/2, j u

n
i+1/2, j +�

n
i−1/2, j u

n
i−1/2, j

h
+ −�

n
i, j+1/2v

n
i, j+1/2+�

n
i, j−1/2v

n
i, j−1/2

h

+−�
s
i+1/2, j u

s
i+1/2, j +�

s
i−1/2, j u

s
i−1/2, j

h
+ −�

s
i, j+1/2v

s
i, j+1/2+�

s
i, j−1/2v

s
i, j−1/2

h
=0 (14)

where necessary, we use second-order extrapolation to account for the no-slip boundary conditions
for velocity field. As in Figure 2, suppose that x= xi−3/2 is the physical domain boundary. Thus,
vni−2, j+1/2 is located on the ghost cell outside the domain and vni−3/2, j+1/2=0 according to the no-

slip boundary conditions. By fitting a quadric polynomial at locations (i, j+ 1
2 ), (i−1, j+ 1

2 ) and
(i− 3

2 , j+ 1
2 ) with the corresponding y-velocity values, it is easy to get vni−2, j+1/2= 1

3v
n
i, j+1/2−

2vni−1, j+1/2 by extrapolation.
For a grid with N cell centers in the x direction and M cell centers in the y direction, the above

approximations can be collected in a (5NM−2(N+M))-by-(5NM−2(N+M)) linear system,
which we denote by⎡⎢⎢⎣

Lh
n−Ch Ch −Gh

n

Ch Lh
s −Ch −Gh

s

Gh
n
T

Gh
s
T

0

⎤⎥⎥⎦
︸ ︷︷ ︸

Ah

⎡⎢⎣
un

us

p

⎤⎥⎦=

⎡⎢⎢⎣
∇h�(�n)

0

0

⎤⎥⎥⎦ (15)

This forms the discrete approximation to (11). Since we assume 0<�n<1, it follows, for example,
from [26, Theorem 3.6] that the eigenvalues of Ah have non-positive real part (Ah is negative
semistable), i.e. Re(�)�0 for all �∈�(Ah). This can be advantageous for (preconditioned) Krylov
subspace methods [26].

For the temporal discretization of (9), we use explicit first-order upwinding for the advective
term ∇ ·(�nun) (specifically we use LeVeque’s first-order upwind with transverse wave corrections
[27]), and we treat the diffusion implicitly with backward Euler. The linear system that arises
because of the implicit discretization is solved in parallel using preconditioned GMRES solver in
PETSc with block Jacobi as the preconditioner, and the cost is negligible relative to the cost for
solving the momentum equations. For efficiency and stability, we use the adaptive time-stepping
procedure described in [15].

The basic strategy we use for simulating the 2-D gel is as follows:

1. For a given �n at time t , solve the discrete system (15) for un, us, and p at time t .
2. Solve for �n (and thus �s) at time t+�t using upwinding for (9), as discussed in the previous

paragraph, with the value of un at time t .
3. Repeat step 1, with the �n at t+�t .
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4. SOLVING THE COUPLED MOMENTUM AND CONTINUITY EQUATIONS

To solve the discrete system (15), we use a collective (box) relaxation scheme within a multigrid
procedure [17]. The box-relaxation scheme updates unknowns locally, cell-by-cell, by solving a
succession of small linear systems. The updated unknowns are used in a Gauss–Seidel manner as
soon as they are available. The key elements of the algorithm are described below.

4.1. Smoother

For the 2-D system (11) on the MAC grid, the box relaxation involves solving the discrete equations
(15) locally in each computational cell (or box). For each interior box, this requires solving a 9-by-9
linear system (four equations for the network velocity, four equations for the solvent velocity,
and one equation for the pressure) for corrections to the unknowns un, us, and p. With Dirichlet
boundary conditions, boxes at the corners of the domain require solving 5-by-5 linear systems,
while boxes on the edges require solving 7-by-7 systems. We update corrections to the unknowns
in a Gauss–Seidel-type manner and combine this with under-relaxation with �=0.675. Suppose
that the linear system on a single box is Lx=b, where L , x and b are the coefficient matrix,
unknown vector and right-hand side, respectively. Then after the (k+1)th box relaxation

xk+1=(1−�)xk+�L−1b (16)

The boxes are processed using red–black ordering. Note that vector values located at cell
edges are relaxed twice while scalar values located at cell centers are relaxed once within each
iteration. Parallelization similar to [18] is developed using the message passing interface (MPI)
for communication on distributed memory computers.

The parallel box relaxation works as follows. Suppose we have a portion of our 2-D staggered
grid on a specific processor as in Figure 3, with one layer of buffer cells marked by dashed lines.

At the beginning of the sweep, the values stored in the buffer cells are current. Let (i, j) be the
global cell index, then cells with (i+ j) mod 2=0 are marked as red (white squares in the figure)
and those with (i+ j) mod 2=1 are marked as black (shaded squares in the figure). During the
red sweep, the red cells in the subdomain are updated in lexicographic order. The updated velocity
components (small rectangles) and pressures (circles) are shown in Figure 3(a). The red cells within
the buffer are also simultaneously relaxed on neighboring processors but their state values are not
yet available to this processor. After the red sweep, a two-stage communication process is carried
out with adjacent processors to update the buffer states. The first stage exchanges local state values
along the left and right subdomain boundaries with the corresponding neighboring processors. The
updated states after the communication are cross-hatched in Figure 3(b). In order to distinguish the
red and black relaxations, the states updated by the red sweep are indicated above or to the right
of the cell edges and those updated by the black sweep are shown below or to the left of the edges.
Updating the states in the upper and lower buffers is achieved through a similar communication
step. Note that unlike the left-right communication, states on the corner cells such as those within
the dashed circles in Figure 3(c) are also sent/received in order to interpolate corrections to the
next finer grid for the subdomain. Explicit communications with diagonal neighbors are avoided
since all the corner states have already been updated in the left-right communication step of the
upper/lower processors. The black box relaxation is done in the same manner, as shown in Figure
3(d–f). It is clear that after the final communication step, all velocity components have been relaxed
twice and pressure components have been relaxed once. It is also clear that all buffer cells hold
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Figure 3. Progression of red–black Gauss–Seidel box-relaxation smoothing sweep. (a) After completion
of the red sweep, pressures at red cell centers and all velocities on red cell edges have been updated.
(b) Updated red cell values are communicated to neighboring processors to the right and left to update
red cell values in subdomain buffer cells. (c) Updated red cell values are communicated to neighboring
processors above and below to update red cell values in subdomain buffer cells. (d) After completion of
the black sweep, pressures at black cell centers and all velocities on black cell edges have been updated.
(e) Updated black cell values are communicated to neighboring processors to the right and left to update
black cell values in subdomain buffer cells. (f) Updated black cell values are communicated to neighboring

processors above and below to update black cell values in subdomain buffer cells.
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updated information and so the information to carry out another smoothing sweep is in place. Note
also that the current values of all variables needed to compute residuals at subdomain cells are
available at the end of each sweep.

4.2. Transfer operators

Suppose that the mesh-spacing in both the x and y directions is given by h, with 1/h a power of 2.
We define a sequence of coarser grids, where each grid is a factor of two coarser than the previous
in both the x and y direction. After one iteration of box relaxation, residuals rh are calculated
at the same locations on the MAC grid as the corresponding unknowns, and the right-hand sides
f 2h of the defect equations on the next coarser grid are formed through restriction with standard
full-weighting. As shown in Figure 4(a), scalar quantities f 2h (pressure or volume fraction) at a
coarse grid center F are calculated as the arithmetic average of the related rh values at the fine grid
centers 1,2,3 and 4. Six-point weighting is used for vector values at a coarse grid edge center E :

f 2h(F)= 1
4 [rh(1)+rh(2)+rh(3)+rh(4)] (17)

f 2h(E)= 1
8 [rh(a)+rh(c)+rh(d)+rh( f )+2rh(b)+2rh(e)] (18)

Note that communication is needed to provide current fine grid residual values with the fine grid
buffers (dashed cells) such as at points a and d , before the restriction is carried out.

After reaching the coarsest grid, corrections on the next finer grid are calculated by linear/bilinear
interpolation and box relaxation is carried out again with the corrected state values. In Figure 4(b),
point 2 is a fine grid center, and points 3 and 4 are centers of fine grid cell edges. The corrections
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Figure 4. Multigrid transfer operators: (a) Restriction: For variables at cell centers (F), restriction is the
arithmetic average of values from the neighboring fine grid points (1,2,3,4). For variables at cell edges
(E), restriction uses a weighted average of values at the neighboring edges (a–f). (b) Interpolation: The
value of a variable at a fine grid cell center (2) is calculated by bilinear interpolation from neighboring
coarse grid cell centers (A, B, C, D). The value of variables at fine grid cell edges such as points 3 or 4
are interpolated by linear interpolation from the neighboring two (I and M) coarse grid cell edges or by

bilinear interpolation from the four neighboring coarse grid cell edges (H, I, J, K).
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for the pressure (Cph) and the velocity (Cvh) are calculated from the related coarse grid values as

Cph(2)= 1
16 [9P2h(C)+3P2h(B)+3P2h(D)+P2h(A)] (19)

Cvh(3)= 1
4 [3V2h(M)+V2h(I )] (20)

Cvh(4)= 1
8 [3V2h(H)+3V2h(I )+V2h(J )+V2h(K )] (21)

where P2h and V2h are the pressure and the velocity on coarse grid. Note that it is also necessary
to interpolate corrections to those fine grid points in the buffer (e.g. point 5) which is within the
processor’s subdomain on the finer grid. Obviously, buffer state values at points such as E , F ,
G and J , K , L are needed to interpolate corrections at points 1, 4 and 5. Since these values are
already available through the communication step of box relaxation, no additional communications
are required for interpolation.

4.3. Parallel multigrid on coarsest grid

The relative communication overhead increases as the grid gets coarser during the multigrid cycle,
and it is known that this may result in a significant loss of efficiency for the parallel application.
We use the agglomeration method to overcome the problem. Specifically, in our implementation,
if the grid is coarse enough so that there is only one grid cell in the x or y direction for any of the
processors, the residuals and volume fractions restricted from the next finer grid are gathered and
distributed globally onto every processor through an all-to-all communication procedure. Then each
processor solves (or approximately solves) the same system of equations on the global coarsest
grid and updates the data within its own subdomain. Two different coarsest grid system solvers
are considered: direct solve by Gaussian elimination with pivoting and approximate solve by a
prescribed small number (5) of box-relaxation iterations. For the test problems considered in this
paper, the number of iterations needed to reach the same tolerance is very close for the two methods.
The two methods have similar overall time cost up to 16 processors, while the approximate solve
version is generally faster for simulations with 32 processors. This presumably reflects faster than
linear increase in the cost of the direct solve as the size of the coarsest grid system grows with the
number of processors. In our computational experiments reported below, the parallel simulations
used the direct solve for 16 or fewer processors and the approximate solve for 32 processors.

4.4. Multigrid as preconditioner for GMRES

It is shown in [15] that multigrid used on its own as the solver for the gel system may not be
very robust, especially when phase separation occurs. The reason is the appearance of a few large
isolated eigenvalues of the multigrid iteration matrix. It is also shown in [15] that these large
eigenvalues are well captured by a Krylov acceleration technique [28]. Specifically, the multigrid
procedure just described is used as a (right) preconditioner for GMRES solution of system (15).
The multigrid-preconditioned GMRES procedure is robust and efficient even when sharp gradients
in volume fraction develop during the gel separation process. We follow the same strategy for the
parallel algorithm by using the multigrid box-relaxation scheme as a preconditioner for the parallel
GMRES solver in PETSc [24]. The Krylov method is applicable to non-symmetric matrices and
non-positive definite preconditioners, both of which are found for the gel system. One multigrid
sweep is carried out per Krylov iteration.
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If we let yT=[(un)T (us)T pT] and f be the right-hand side of (15), the preconditioned system
of equations to solve with GMRES is given by

Ah(Mh)
−1

z= f (22)

where z=Mh y, and Mh represents the preconditioning matrix from the multigrid box-relaxation
scheme. As shown in [29], the (m+1)th iteration of the multigrid procedure can be written in the
form

y(m+1) =(I −(Mh)−1Ah)y(m)+(Mh)−1 f (23)

Applying this once with zero initial guess gives

y(1) =(Mh)−1 f

This is exactly what we do when applying multigrid once as a preconditioning matrix to vector f .
Therefore, the multigrid preconditioner always takes zero as the initial guess, the input vector as
the right-hand side, and sets the updated state variables after one multigrid iteration to be the output
vector. Function PCShellSetApply(pc, (∗apply)(void∗,Vec,Vec)) in PETSc provides a convenient
way to implement a user-defined parallel preconditioner, where pc is the preconditioner context
and apply is the user-provided preconditioning routine. The first input argument of function apply
is a void pointer and can be cast to whatever the user has set the application-defined context to be
and the other two arguments are global input and output vectors [24].

We consider system (15) at time t ‘solved’ when the residual of the �th iterate of the respective
method satisfies

‖r (�)‖2
‖ f ‖2 �10−6 (24)

where r̃ (�) = f −Ah y(�). Unless otherwise specified, for all time steps but the initial one, we use
the previous time step’s values for the network and solvent velocities and pressure as initial guesses
for the iterative methods. After solving system (15), updated values of the network velocity are
communicated to the appropriate buffer cells. These values are needed at the beginning of the
next time step in order to evaluate the discrete advection terms in approximating the continuity
equation (9) for �n.

5. NUMERICAL RESULTS

To test the method in 2-D, we let the domain be the unit square and start with an initial distribution
of network �n that is perturbed about the unstable region of the osmotic pressure � (cf. Figure 1):

�n=0.08+2.5 ·10−4(cos(6�x)+cos(4�y))

The model parameters are set to �n=0.1, �n=0.3, �s=0.025, �s=0, �=1, and 	=10−7. The
first four of these values make 
n=0.5 and 
s=0.05. Note that multigrid F-cycle is always used
for cycling through the grids. Plots of the network volume fraction and velocity field at various
stages of gel phase separation are shown in Figure 6. Since the pressure distribution has very
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Figure 5. Network volume fraction distribution along x=0.5 at different time steps.

similar patterns as the volume fraction, it is not shown here. Figure 5 shows the network volume
fraction �n distributions along x=0.5 for different time steps. Clearly as time evolves, the network
and solvent phases separate and channels with sharp edges form. The simulation was run on 16
processors with a 512×512 grid, using multigrid-preconditioned GMRES as the solver for the
momentum equations.

Figures 7 and 8 display the number of iterations needed to satisfy the relative residual condition
(24) for multigrid (F-cycle) as a stand-alone solver (MGF) and as preconditioner for GMRES
(GMRES-MGF) with mesh size 512×512 at different time steps during the simulation. The results
are for serial (1×1) and parallel simulations with 32 processors (8×4 parallel decomposition). As
pointed out in [18], since cells of the same color are still coupled with each other, a degradation
in the smoothing rate of the scheme may be expected as the number of processors increases.
Another source for the degradation may be the reduction in the number of multigrid levels as the
number of processors increases, along with the approximate iterative solution of the coarsest grid
equations (see Section 4.3). It is clear from the figures that this degradation, increasing the number
of iterations by 1–3, is not severe with a moderate number of processors. By comparing with
Figure 5, it can be seen that the number of iterations required by the numerical solvers remains
approximately constant until channels with sharp edges form. Starting at this stage, the number
of iterations for MGF increases sharply. In fact, MGF fails to converge in the later stages of
gel separation within 30 iterations. In contrast, GMRES-MGF performs well for all stages of gel
separation, showing only a moderate increase of iterations. Therefore, as previously mentioned in
[15], using multigrid as the preconditioner for GMRES yields a more robust solver than multigrid
alone.

By choosing a time step in which the serial and parallel methods required the same number
of iterations, the speedup of the code within one time step of a simulation was determined.
This is plotted in Figure 9 for grid sizes of 1024×1024 and 512×512. It is clear that for a
sufficiently large problem, the code shows good scalability. Table I shows the detailed information
about the wall clock time distribution percentage for parallel runnings with different number of
processors. The results for the last column include parallel box relaxation, residual evaluation and
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Figure 6. Network volume fraction (left) and distribution of the network velocity (right). Vmax
is the largest velocity value in the plot.
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Figure 7. Number of iterations for MGF at different time steps for 1 and 32 processors.
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Figure 8. Number of iterations for GMRES-MGF at different time steps for 1 and 32 processors.

intergrid transfers, which are fully parallelizable. Smoothing on coarsest grid only makes use of
one processor and forms the serial part of the algorithm.

6. CONCLUSIONS

We have presented a computational methodology for simulating models of two-phase gel dynamics.
The main computational challenge of these models is in solving the momentum and incompress-
ibility equations that involve variable-coefficient differential terms and terms coupling the two
fluids. Our method of solving this system by using parallel multigrid with a box-type relax-
ation procedure as a preconditioner for GMRES solver in PETSc package appears to be very
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Figure 9. Speedup plot for GMRES-MGF for different sized grids.

Table I. Wall clock time distributions for simulations on 1024×1024 grid.

No. of processors Communication (%) Smoothing on coarsest grid (%) Others (%)

8 2.7 0.8 96.5
16 6.8 2.3 90.9
32 11.1 5.1 83.8

effective with good parallel performance. Numerical results from model problems in two dimen-
sions indicate that the method is both robust and efficient.
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